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In order to solve nonlinear systems of the form of Eqs. 1, we discretize the
differential equations using a finite difference scheme. We use the one found in
the book of Petras I. Fractional-Order Nonlinear Systems. Springer 2011, which is
available in MATLAB code at http://www.mathworks.com/matlabcentral/
fileexchange/27336-fractional-order-chaotic-systems.

The finite difference scheme of is Petras appropriate for systems of the form:

A fractional finite difference scheme

Nonlinear fractional models

A simple test example
In order to test the algorithm, we use it to solve a system with a known analytical
solution, to be able to compare it to the numerical solution. The system we
choose is a constant input one-compartment model with fractional elimination.

We present a method to formulate and solve numerically, nonlinear
pharmacokinetic systems which include fractional rates. As an example we
consider the fractional Michaelis – Menten (MM) kinetics.

Objective

We are interested to solve numerically nonlinear models of the form:

Conclusions
• An algorithm to solve numerically nonlinear systems of FDEs was shown to perform

well.
• This algorithm can be considered as general purpose and may be used for linear

systems too.

where f1, g1, f2 and g2 are non-linear functions (or linear).
This general form that includes derivatives of fractional order “1-α” which
appear on the right hand side while an ordinary derivative appears on the left
hand side, gives the flexibility to formulate arbitrary non-commensurate
compartmental models that respect mass balance.
Note that models of larger dimensions can be treated with the same
methodology, and also more fractional derivatives can be considered.
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It is an explicit scheme where the value of A(i) in every next time step, is an
explicit function of the value of A(i-1) in the previous time step as follows:
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Where memo(…) is a function related to the memory effects, not discussed here.

For equations of the form we are interested in, i.e.:
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the finite difference scheme has to be modified and it is defined implicitly with
respect to the value of A(i) for the next time step:
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So at each time step we need to solve numerically the above scheme in order to
obtain the value of A(i). For the implementation of the numerical solution if Eq.
2, the MATLAB function fzero() was used, which works by the bisection
algorithm. The initial guess for the value of A(i) needed in the root finding
algorithm was set to be A(i-1) which is known from the previous step and is very
close to the solution A(i). This is means that the root finding procedure needs
very few steps to converge to the solution and it is very fast. This procedure is
repeated for the entire integration time interval.
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analytical solution, where Eα,β is the
Mittag-Leffler function

We observe that the numerical
solution of the system (red line) is
identical to the analytical solution
(blue circles)

A 2-compartment model with 
fractional Michaelis – Menten elimination
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A1, FD alpha=0.5
A2, FD, alpha=0.5
A1, RK, alpha=1
A2, RK, alpha=1
A1, FD, alpha=1
A2, FD, alpha=1

Following the general form of Eqs. 1 we can formulate an example nonlinear, 2-
compartment pharmacokinetic model with a constant input rate and fractional
Michaelis – Menten elimination.
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Solving the system
numerically for arbitrary
values of the parameters
using the method presented
gives profiles which are
identical to the ones
produced by a Runge – Kutta
method (circles) for the non-
fractional case of α=1.
For the fractional case of
α=0.5 the profiles clearly
deviate from the integer case,
however we have no
alternative method to
compare them to.

The presented method is a general purpose way for solving non-linear fractional
models and may be used for linear systems too, alternatively to other methods
presented previously, such as the one based on Numerical Inverse Laplace
Transform (PAGE 19 (2010) Abstr 1718 [www.page-meeting.org/?abstract=1718])
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